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Sound produced by a vortex interacting
with a cavitated wake
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Boston University, College of Engineering, 110 Cummington Street, Boston MA 02215, USA

(Received 17 January 2005 and in revised form 9 June 2005)

A linearized analysis is made of the canonical problem of sound production during
the convection of a line vortex of strength Γ in steady flow of water over a ‘fence’
of height h on a flat wall in the presence of a vacuous cavity in the wake of the
fence. The cavity is assumed to extend sufficiently far downstream for sound waves to
be regarded as launched above a non-compact, pressure-release surface. Additional
vorticity is released from the tip of the fence in accordance with the Kutta condition,
and is convected at the mean stream speed U along the free streamline boundary
of the cavity. Sound pressures of opposite phases are generated by the incident and
the shed vorticity. The predicted radiation consists of a pressure pulse of amplitude
proportional to ρoUΓ/h (ρo being the mean water density) and width approximately
equal to fence height/mean flow Mach number, produced as the vortex passes the
tip of the fence. The acoustic amplitude decreases rapidly at later times because of
destructive interference between the sound generated by the impinging vortex and the
shed vorticity.

1. Introduction
An underwater projectile can attain very high speeds if a significant part of it is

enclosed within a gaseous envelope or cavity produced by a ‘cavitor’ situated close
to the nose of the projectile (Young, Brungart & Lauchle 2004; Young et al. 2005).
The gas ‘cushions’ the hydrodynamic flow and inhibits contact between the water
and the surface of the projectile downstream of the cavitator. Pressure fluctuations
in the separation region between the surface of the projectile and the water may
be ignored, because of the great difference in mass densities between the gas and
water, permitting the gas–water interface to be treated as a ‘pressure-release’ surface.
Turbulence in the aqueous boundary layer approaching the wetted trailing edge of
the cavitator from the nose generates sound and hydrodynamic pressure fluctuations
as it convects across the edge, and it is of great theoretical and practical interest to
determine how sound production is influenced by the pressure release interface.

Various additional sources of the sound generated by practical cavity flows of this
type are readily identified. These include turbulence quadrupoles in the flow at the
interface which, however, tend to be relatively unimportant because the pressure-
release interface causes the quadrupole sound pressure to vary as ρov

2M3, where
ρo is the mean water density, and the Mach number M = v/co � 1, v being a flow
velocity and co the mean sound speed in water (Ffowcs Williams 1974). Similarly,
bubbles and water droplets in the break-up region of the cavity far downstream
are respectively equivalent to monopole and dipole sources. But except at extremely
high frequencies, their importance is again greatly reduced by the proximity of the
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pressure-release cavity. Observation (Young et al. 2005) suggests that the acoustic
noise is dominated over a broad range of frequencies by the unsteady impingement
of gas on the gas–water interface. Gas from a reservoir flows into the cavity as a
jet, whose impingement ripples the interface and produces an unsteady surface force
and an acoustic source of dipole type. The acoustic pressure generated by the dipole
varies nominally as ρ ′

ov
2M per unit area of the interface, where ρ ′

o is the mean gas
density. However, it is expected that the importance of this distributed source can
be significantly reduced by careful design of the gas inlet. Edge-related sources of
the type discussed in this paper would then come into prominence, since it may be
anticipated that the corresponding sound pressures will scale as ρov

2
√

M , typical of
the radiation from non-compact knife-edge flows (Ffowcs Williams & Hall 1970;
Howe 1998b).

Young et al. (2004, 2005) have measured the wall pressure fluctuations just
upstream of a cavity formed in the wake of a backward facing step. They report
partial agreement with predictions for edge-generated fluctuations given in Young
et al. (2005) and originally made by Howe (1998a) using the diffraction theory of
Chase (1972, 1975) and Chandiramani (1974). The Chase–Chandiramani theory was
devised for non-cavitating flow, and assumes that boundary-layer-generated edge
noise corresponds to the diffracted pressure field produced when a prescribed ‘frozen’
pattern of hydrodynamic wall pressure fluctuations convects over the edge. Predictions
of the acoustic radiation by this means agree well with edge-noise measurements at
low Mach numbers, provided a suitable empirical model is available for the spectrum
of the incident frozen pressure field (Blake 1986). The theory implicitly imposes the
Kutta condition that velocity fluctuations must remain finite at the upstream edge of
the cavity.

In the present paper a theoretical investigation is made of a canonical edge–cavity
interaction problem, involving nominally steady two-dimensional inviscid flow of
water at speed U along a flat wall towards a ‘fence’ of finite height h to the rear of
which is formed a cavity of the Kirchhoff–Rayleigh type (Birkhoff & Zarontonello
1957; Rayleigh 1876), as illustrated in figure 1(a). A line vortex of strength Γ is
embedded in the flow and aligned parallel to the fence. The vortex is swept over the
fence thereby perturbing the free streamline boundary of the cavity and causing sound
waves to radiate away into the water. The vortex may be regarded as a single element
in the turbulent flow past the fence. Although the longitudinal coherence of such a
vortex does not permit it to be fully representative of a real three-dimensional eddy,
it is known (e.g. see Crighton 1975; Howe 1998b) how to generalize hydroacoustic
scaling laws from two to three spatial dimensions, so that a full understanding of this
two-dimensional problem is not without practical significance.

The problem is geometrically nonlinear, but can be solved in a first approximation
by assuming the vortex to be sufficiently weak (Γ � hU ) that it is convected passively
past the fence at the local undisturbed mean velocity. This condition is effectively
equivalent to the usual edge-noise approximation, that boundary layer turbulence
may be regarded as ‘frozen’ during convection by the mean flow across the edge
interaction region (Blake 1986; Chase 1972, 1975). It is known from experiment
that identifiable turbulence structures convect typically at about 70% of the mean
stream velocity, which is very much larger than likely nonlinear convection velocities
produced by images and neighbouring eddies. Fluctuations everywhere within the
fluid, including at the free streamline, will therefore be taken to be governed by the
equations of motion linearized about the nonlinear mean flow. In the absence of
geometrical nonlinearity, when the flow is of the type indicated in figure 1(b), where
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Figure 1. (a) Passive convection of a line vortex Γ in Kirchhoff–Rayleigh free streamline flow
of water past a fence of height h. (b) Convection of a vortex in uniform flow past a half-plane
with a free streamline wake.

the free streamline of the cavity can be regarded as the continuation of the wall,
linear theory predicts that no sound is produced during the passage of the vortex –
in precise agreement with the corresponding prediction for trailing-edge noise in
the absence of cavitation. This occurs because linear theory in these circumstances
requires the vortex Γ and the shed vorticity on the free streamline to convect parallel
to the wall at the same speed (Howe 1976, 1998b). Any radiation from the edge is
then relatively weak and second order in the perturbation amplitude (∼ O(Γ 2)). Such
cancellation would not be expected for flow past the fence, however, because the
acceleration of the mean flow is different on neighbouring streamlines in the vicinity
of the edge of the fence.

The aeroacoustic problem is formulated in § 2. The hydrodynamic near-field
properties of the unsteady flow are determined according to linear theory with a Kutta
condition applied in § 3 and the sound radiated from the fence is then calculated (§ 4).

2. Formulation of the problem
Consider the nominally steady two-dimensional irrotational flow of water at speed

U parallel to the rigid wall x2 = 0 of figure 1(a), where the origin of coordinates
x =(x1, x2) is taken at the foot B of the fence BC. A free streamline separates



336 M. S. Howe

smoothly from the tip C of the fence forming the boundary CD of a cavity wherein
the pressure p vanishes, such that the mean flow speed on the free streamline is U .
The motion is assumed to be linearly disturbed from the steady state by a line
vortex of strength Γ � hU situated at x = xo(t) at time t . In this approximation
the influence on the vortex of the image system formed in the rigid boundaries and
the free streamline is negligible, so that the vortex is swept over the fence along a
streamline of the undisturbed flow at the local mean flow velocity vo(x), say.

The sound generated as the vortex passes the fence will be calculated by application
of Lighthill’s acoustic analogy (Howe 1998b). In all practical flows of the present type
the mean flow Mach number is infinitesimal, so that convection of sound by the
mean flow can be neglected. The ‘vortex sound’ formulation of Lighthill’s equation
then reduces to the form (Howe 1998b)

(
1

c2
o

∂2

∂t2
− ∇2

)
B = div (ω ∧ v), (2.1)

where B = p/ρo + 1
2
v2 is the total enthalpy, ρo, co are respectively the mean density

and sound speed in the water, v ≡ v(x, t) the flow velocity, and ω = curl v is the
vorticity. Recall that B ≡ −∂ϕ/∂t in those regions where the motion is irrotational
and described by a velocity potential ϕ. Therefore it may be assumed that B ≡ 0 in
the steady state (in the absence of the vortex). Viscous dissipation is ignored within
the body of the fluid, but its role in diffusing vorticity from the fence will be implicitly
included in the analysis of the motion by application of the Kutta condition at the
tip of the fence (Crighton 1985).

The right-hand side of equation (2.1) is assumed to be known and the solution
B(x, t) determines the sound radiated during the interaction of the vortex with the
fence. The solution must satisfy the condition of vanishing normal component of
velocity on the wetted section ABC of the wall and fence, and (in the linearized
approximation) vanishing pressure on the undisturbed mean free streamline S. A
formal representation of B(x, t) can be written down by introducing a Green’s
function G(x, y, t − τ ), which is a solution of (2.1) with outgoing wave behaviour
when the right-hand side is replaced by the impulsive point source δ(x − y)δ(t − τ ).
A unique specification of G is obtained by requiring it to have vanishing normal
derivative on the rigid boundary ABC of the flow and to vanish on the free boundary
S. Then (see Howe 1998b for detailed manipulations)

B(x, t) = −
∫

(ω ∧ v)( y, τ ) · ∂G

∂ y
(x, y, t − τ ) d2 y dτ +

∫
S

B(s, τ )
∂G

∂yn

(x, y, t − τ ) ds dτ.

(2.2)

In these integrals the temporal integrations with respect to τ extend over all possible
values of the retarded time (−∞, ∞), and s ≡ s( y) is distance measured along the
mean free streamline from the tip of the fence. The first integral is over the fluid
region where ω 
= 0, and is therefore confined to the infinitesimal cross-section of
the vortex Γ . The second is taken along the undisturbed free streamline S, and yn

is distance measured normal to the streamline and to the left of the direction of the
mean flow (from S into the fluid).

Now ω = Γ kδ( y − xo(τ )) and v(xo(τ ), τ ) ≡ vo(xo(τ )) in the linearized
approximation, where k is a unit vector out of the plane of the paper in figure 1(a).
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Figure 2. Image of the hydrodynamic flow in the upper ζ -plane.

Therefore (2.2) becomes

B(x, t) = −Γ

∫
vo(xo(τ ))

∂G

∂yn

(x, xo(τ ), t − τ ) dτ +

∫
S

B(s, τ )
∂G

∂yn

(x, y, t − τ ) ds dτ.

(2.3)

The first integral can be performed once the functional form of Green’s function
is specified. To evaluate the integral over the free streamline it is first necessary to
determine B(s, t) on S.

3. Hydrodynamic interaction of the vortex and fence
At very low mean flow Mach number M = U/co the wavelength of sound generated

by the interaction ∼ h/M (� h) is very much larger than the interaction region and
the details of the local motion in the neighbourhood of the fence can be calculated by
assuming the flow to be incompressible. When the motion is only linearly disturbed
from the steady state by the vortex Γ the calculation is readily performed in terms
of the mapping of the undisturbed region of flow in the z-plane (z = x1 + ix2) onto
the upper half of the ζ -plane (figure 2).

3.1. The mean flow

Let the boundary ABCD of the undisturbed mean flow be mapped onto the real
ζ -axis with the correspondences indicated in figure 2, with the tip C (z = ih) and the
foot B (z = 0) of the fence mapping respectively into the ζ = 0 and ζ = −1. Then the
complex potential wo of the mean flow and the transformation are given by (Lamb
1932; Batchelor 1967; Birkhoff & Zarantonello 1957; Gurevich 1965)

wo =
2hUζ

π + 4
,

z =
iπh

π + 4
+

2h

π + 4
[
√

ζ
√

ζ + 1 − ln(
√

ζ +
√

ζ + 1) + 2i
√

ζ + 1],


 η � 0,

(3.1a)

(3.1b)

where ζ = ξ + iη (ξ, η being the real and imaginary parts of ζ ) and the principal
values of the square roots and the logarithm are to be taken.

The streamlines of the mean flow are the family of curves η(x1, x2) = constant; the
mean flow velocity is given by

vo =
2hU

π + 4
∇ξ (x1, x2). (3.2)
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Figure 3. The upper curve represents the numerical solution of (3.3) defining the motion
of the vortex Γ past the fence when y∞ = 0.25h. The vortex passes through the points • at
the indicated non-dimensional times Ut/h, measured from the instant at which the vortex
is closest to the tip of the fence. The points on the free streamline correspond to successive
positions of the peak in the value of the circulation density γ (t − s/U ) of figure 5.

3.2. Motion of the vortex

In the linearized approximation the complex position zo = x1o + ix2o of the vortex at
time t is determined by the equation of motion dz∗

o/dt = (dwo/dz)z=zo
. This must be

solved numerically, and this is conveniently done by considering the motion of the
image vortex in the ζ -plane at ζ = ζo(t) ≡ ξo(t) + iηo, which travels along a straight
line ηo = constant. If x2o = y∞ is the asymptotic distance of the vortex from the wall
at positions far upstream of the fence, equation (3.1) then implies that

dξo

dt̂
=

h

U

dwo

dζ

∣∣∣∣∣
(

dζ

dz

)
z=zo

∣∣∣∣∣
2

≡ (π + 4)

2

∣∣∣∣
√

ζo + 1√
ζo + i

∣∣∣∣
2

, t̂ =
Ut

h
, ηo =

y∞(π + 4)

2h
. (3.3)

This determines ζo ≡ ζo(t̂) as a function of the non-dimensional time Ut/h. The
position zo(t̂) in the physical plane is found by substitution of the solution into
equation (3.1b).

The upper curve in figure 3 depicts the path of the vortex when y∞ = 0.25h. The
points labelled on the curve give the position of Γ at different values of Ut/h,
measured from the instant at which the vortex is at its shortest distance from the
tip of the fence. The variable spacing between these points indicates how the vortex
convection speed vo decreases as the vortex approaches the fence and then accelerates
to vo = U as it passes the tip.

3.3. The hydrodynamic approximation

In the absence of the vortex it can be assumed that B vanishes everywhere. As
the vortex passes the fence B(x, t) is linearly perturbed about this value. The
hydrodynamic components of the fluctuations dominate the motion in the near
field of the fence, and are determined by Lighthill’s equation (2.1) with the term in
co on the left-hand side discarded. The solution B(x, t) of this modified equation is
required in order to evaluate the second integral in (2.3).

The solution can be effected by transforming to the ζ -plane. First note that

δ(x − xo) =

∣∣∣∣dζ

dz

∣∣∣∣
2

δ(ξ − ξo)δ(η − ηo) (3.4)
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and that the Cauchy–Riemann equations imply

ω ∧ v ≡ 2hUΓ

π + 4
(k ∧ ∇ξ ) δ(x − xo) =

2hUΓ

π + 4

∣∣∣∣dζ

dz

∣∣∣∣
2

∇η δ(ξ − ξo)δ(η − ηo). (3.5)

Then the hydrodynamic form of (2.1) becomes in the ζ -plane(
∂2

∂ξ 2
+

∂2

∂η2

)
B = − 2hUΓ

π + 4

∣∣∣∣
(

dζ

dz

)
o

∣∣∣∣
2

δ(ξ − ξo)δ
′(η − ηo), (3.6)

where (dζ/dz)o is evaluated at z = zo and the prime denotes differentiation with
respect to the argument. The solution is required in η > 0.

In irrotational regions B ≡ −∂ϕ/∂t , so that B must satisfy ∂B/∂η = 0 on the
section −∞ < ξ < 0 of the real axis. To obtain the appropriate condition on the
positive real axis, observe that Bernoulli’s equation implies that, except at the point
occupied by the vortex,

∂ϕ

∂t
+

δp

ρo

+ vo · ∇ϕ = 0,

where δp and ϕ denote respectively the perturbation pressure and velocity potential
induced by the passage of the vortex. This equation remains valid on a fixed control
surface close to the perturbed free streamline, and δp and ϕ must differ from their
respective free streamline values by terms of second order. Hence, because δp =0 on
the perturbed free streamline, the potential ϕ satisfies to first order ∂ϕ/∂t +U∂ϕ/∂s =
0 on S (where vo ≈ U ). Thus, because ds =2h dξ/(π + 4) on S, the corresponding
condition on the image ξ > 0, η = 0 of the free streamline becomes ∂B/∂t + {(π + 4)
U/2h}∂B/∂ξ = 0.

Equation (3.6) may now be solved by setting

B = BI + Bs (3.7)

where BI (ξ, η, t) is the particular integral equal to the ‘free space’ solution when the
boundary at η = 0 is ignored. This decays with distance from the source and can be
expressed as the double Fourier integral

BI =
sgn(η − ηo)

4π

∫ ∞

−∞
F(k, ω)ei(kξ−ωt)−|k||η−ηo | dk dω (3.8)

where F(k, ω) is the Fourier transform of the source term on the right of (3.6) with
respect to its dependances on ξ and t , given by

F(k, ω) =
−Γ Uh

π(π + 4)

∫ ∞

−∞

∣∣∣∣dζo

dz
(τ )

∣∣∣∣
2

e−i(kξo(τ )−ωτ ) dτ, (3.9)

in which dζo/dz is known as a function of time from the numerical solution of (3.3).
The component Bs(ξ, η, t) is the bounded solution of Laplace’s equation (∂2/∂ξ 2 +

∂2/∂η2)Bs = 0 in η > 0 satisfying

∂B

∂η
= 0, ξ < 0,

∂B

∂t
+

(π + 4)U

2h

∂B

∂ξ
= 0, ξ > 0,


 η = 0.

(3.10a)

(3.10b)

In addition the Kutta condition is imposed by requiring ∂Bs/∂η to remain finite at the
image ζ = 0 of the tip of the fence. This is a standard Wiener–Hopf problem (Noble



340 M. S. Howe

1958) that is readily solved by first determining Bs for each Fourier component of BI

proportional to ei(kξ−ωt)−|k||η−ηo |.
To solve the aeroacoustic problem using (2.3) it is necessary to know the behaviour

of B only on the free streamline (η = 0, ξ > 0). Condition (3.10b) implies that
fluctuations in B propagate without change as wave-like disturbances from the
image ζ = 0 of the fence tip along the free streamline η = 0 at constant speed
dξ/dt = (π + 4)U/2h (at speed U in the physical plane), and that for each Fourier
component of the incident disturbance we can write

B = α(k, ω, ηo)e
i(νξ−ωt), ν =

2ωh

(π + 4)U
, for ξ > 0, η = 0.

The wave amplitude α(k, ω, ηo) is fixed by the Kutta condition. The procedure for
its application is identical with that used in analogous treatments of small-amplitude
vortex shedding from flat-plate airfoils (Crighton 1985; Howe 1998b), and yields

α(k, ω, ηo) =
2

√
k + i0√
ν + i0

e−|k|ηo .

Using this formula and summing over all frequencies ω and wavenumbers k of BI ,
the value of B = B(ξ, 0, t) ≡ B(s, t) on the free streamline is found to be given by

B(ξ, 0, t) = − 1

2π

∫ ∞

−∞

F(k, ω)
√

k + i0√
ν + i0

ei(νξ−ωt)−|k|ηo dk dω

= − UΓ heiπ/4

2π3/2(π + 4)

∫ ∞

−∞

∣∣∣∣dζo

dz
(τ )

∣∣∣∣
2

Re

[
1

ζ
3/2
o (τ )

]
ei(νξ−ω(t−τ ))dω dτ√

ν + i0
(3.11)

= − U 3/2Γ

2πh3/2

(
π + 4

2

)3/2 ∫ t−s/U

−∞

∣∣∣∣
√

ζo(τ̂ ) + 1√
ζo(τ̂ ) + i

∣∣∣∣
2

× Re

[
1

ζ
3/2
o (τ̂ )

]
dτ√

t − s/U − τ
(3.12)

where use has been made of (3.9) and (3.1b). Both of the alternative representations
(3.11), (3.12) are used below.

3.4. Bound vorticity on the free streamline

The unsteady flow may be regarded as ‘slipping’ over the undisturbed free streamline
on which the limiting value of the irrotational velocity determines the change in the slip
velocity, i.e. the bound vorticity. On the free streamline B(s, t) = −∂ϕ/∂t ≡ U∂ϕ/∂s,
where γ = −∂ϕ/∂s is the unsteady component of the circulation per unit length of
the free streamline (taken in the positive sense with respect to the k-direction, out of
the plane of the paper in figures 1(a) and 3) which convects as a frozen pattern on S
at the free streamline velocity U (i.e. γ = γ (t − s/U )). In this sense the contribution
to the radiation from the second integral of (2.3) is similar to that from Γ , except
that the vorticity is a distribution ‘bound’ to the free streamline.

The total bound vorticity ΓS shed from the fence at time t is

ΓS = −
∫

S

∂ϕ

∂s
(s, t) ds, (3.13)
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which (3.12) permits to be expressed in the following non-dimensional form:

ΓS(t̂)

Γ
=

1

π

(
π + 4

2

)3/2 ∫ t̂

−∞

∣∣∣∣
√

ζo(τ̂ ) + 1√
ζo(τ̂ ) + i

∣∣∣∣
2

Re

[
1

ζ
3/2
o (τ̂ )

]√
t̂ − τ̂ dτ̂ , t̂ =

Ut

h
. (3.14)

The growth of the overall relative bound vorticity ΓS/Γ is plotted in figure 4 as a
function of Ut/h for y∞/h = 0.05, 0.1, 0.25, the time being measured in each case
from the instant of closest approach of the vortex to the tip of the fence. The total
shed circulation becomes equal and opposite to that of the incident vortex when the
latter attains its minimum distance from the fence, and reaches a negative maximum
shortly afterwards. The circulation density γ (t − s/U ) must therefore be confined to a
relatively short interval in s propagating at speed U along the free streamline. This is
illustrated in figure 5, where γ (t − s/U )h/Γ is plotted as a function of (Ut − s)/h for
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y∞/h = 0.1 and 0.25. The points labelled on the free streamline of figure 3 represent
successive locations of the peak circulation density when y∞ = 0.25h. If, in a first
approximation, we regard this peak as the moving centroid of a localized vortex on the
free streamline, it is seen that it keeps pace with the incident vortex, and since figure 4
shows that its net circulation is essentially equal and opposite to Γ , the combined
back reactions of two vortices on the unsteady motion in the neighbourhood of the
fence must therefore decrease extremely fast as they pass downstream. Thus, the
production of sound by the interaction of Γ with the fence can only be effective
during the very short time interval in which the vortex is accelerating past the tip of
the fence.

4. The acoustic radiation
4.1. Green’s function

The hydrodynamic problem of § 3 determines the unsteady pressure distribution in the
acoustic near field of the fence. At the very low mean flow Mach numbers M = U/co

that are relevant in water the wavelength of the sound generated as the vortex passes
the fence is typically of order h/M � h, so that the acoustic response of the fluid
becomes evident only at large distances from the fence, where |x| � h. Lighthill’s
acoustic analogy equation (2.1) and its formal solution (2.3) provide the means for
determining the far-field sound in terms of the calculated near field. This simplifies
the evaluation of the integrals in (2.3), because an explicit functional representation
of the Green’s function G(x, y, t − τ ) is required only for |x| � h, and only in the
acoustically compact limit in which the characteristic wavelength of the sound is also
much larger than h.

Symmetry arguments (confirmed by routine analysis: Howe 1998a; Young et al.
2005) show that the compact approximation G0(x, y, t − τ ), say, to Green’s function
for the geometrically much simpler problem of figure 1(b), where there is no fence
and the free streamline and cavity begin at O, is equal to just twice the corresponding
Green’s function for a thin, rigid half-plane in the absence of separation and the
cavity (so that sound can also propagate freely to infinity in the lower region x2 < 0
of figure 1b). The compact approximation for the half-plane was determined by Howe
(1975, 1998b) and using it we find for the cavity flow problem of figure 1(b)

G0(x, y, t − τ ) =
2φ( y) sin

(
1
2
θ
)

π
√

r
δ

(
t − τ − |x|

co

)
, |x| → ∞, (4.1)

where x = (x1, x2) = r(cos θ, sin θ) and

φ( y) = Re (−i
√

z), z = y1 + iy2. (4.2)

This result can be generalized to determine the corresponding Green’s function
G(x, y, t − τ ) for the geometry of figure 1(a). To do this, note first that the functional
form of φ( y) ensures that G0 satisfies the conditions of figure 1(b), namely that
∂G0/∂yn = 0, G0 = 0 respectively on y1

<
> 0, y2 = 0. Also, at large acoustic wavelengths

and for observer and source positions at large distances from the fence (|x|, | y| � h),
the geometry of the fence and wall of figure 1(a) will be indistinguishable from the
plane wall analogue of figure 1(b). Thus, viewed on this scale the compact Green’s
function for figure 1(a) must coincide with (4.1). The actual Green’s function for the
fence and source positions y ∼ O(h) is therefore obtained merely by replacing the
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function φ( y) (which is applicable when | y| � h) by

Φ( y) = Re

(
− i

√
2hζ (z)

π + 4

)
, z = y1 + iy2. (4.3)

Hence

G(x, y, t − τ ) =
2Φ( y) sin

(
1
2
θ
)

π
√

r
δ

(
t − τ − |x|

co

)
, r ≡ |x| → ∞, (4.4)

which evidently satisfies G =0 on the free streamline and ∂G/∂yn = 0 on the wetted
sections of the wall and fence, and has the correct behaviour for | y| � h where
Φ( y) ∼ φ( y).

According to (4.4) the sound spreads out cylindrically from the source region (as
appropriate for two-dimensional source distributions), decaying as 1/

√
r at large

distances with the directionality sin(θ/2), which vanishes in downstream directions
close to the pressure-release free streamline, and peaks in the direction directly
upstream of the fence.

4.2. Direct radiation from the vortex

At infinitesimal Mach number and at large distances from the fence, the acoustic
component of B(x, t) ≈ p(x, t)/ρo, where p(x, t) is the acoustic pressure perturbation.
The first integral in (2.3) is the contribution pΓ , say, to this pressure produced by the
direct interaction of the vortex with the fence, when the influence of vortex shedding
is ignored.

Evaluating the integral using (4.4) we find

pΓ (x, t)(
ρoUΓ

h

)(
h

r

)1/2

sin
(

1
2
θ
) ≈ − 2

√
h

πU

[
vo

∂Φ

∂yn

]

= − 1

π

(
π + 4

2

)1/2 [ ∣∣∣∣
√

ζo + 1√
ζo + i

∣∣∣∣
2

Re

(
1√
ζo

)]
,

r = |x| → ∞, (4.5)

where the square brackets indicate evaluation at the retarded time [t] = t − |x|/co,
i.e. at the retarded position y = xo([t]) of the vortex in the physical plane, and in the
ζ -plane at ζo = ξo([t̂]) + iηo (t̂ =Ut/h).

The curves labelled pΓ in figures 6 and 7 illustrate the non-dimensional waveform
determined by (4.5) respectively for y∞/h = 0.25 and 0.1. The trajectories of the vortex
and the centroid of the free-streamline circulation density γ (t − s/U ) are also plotted
in upper part of figure 7 (see figure 3 for the corresponding plots for y∞/h = 0.25). In
both cases pΓ has the form of a sharp-fronted, negative pulse whose front develops
rapidly at the retarded time at which the vortex passes close to the tip of the fence;
the pulse decays slowly at later times and is still significant when the retarded position
of the vortex is several fence heights downstream.

4.3. The overall acoustic radiation

The second integral of (2.3) determines the component pS(x, t) of the acoustic pressure
attributable to the bound vorticity on the free streamline. It is readily evaluated using
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Figure 6. The non-dimensional, far-field acoustic pressures (pΓ , pS and pΓ + pS)/
(ρoUΓ/h)(h/r)1/2 sin( 1

2
θ ) plotted as functions of the retarded time t − |x|/co for y∞/h = 0.25.

(4.4) and the representation (3.11) of B(s, τ ) on S. The definition (4.3) implies that

∂G

∂yn

=
1

π
√

ξ

(
π + 4

2h

)1/2 sin
(

1
2
θ
)

√
r

δ

(
t − τ − |x|

co

)
on S, where ξ > 0, η = 0.

The integration with respect to s is performed explicitly by recalling that ds =
2h dξ/(π + 4) on S, leading to

pS(x, t)(
ρoUΓ

h

) (
h

r

)1/2

sin
(

1
2
θ
) ≈ −Uh

2π

(
2

π + 4

)1/2 ∫ [t]

−∞

∣∣∣∣dζo

dz
(τ )

∣∣∣∣
2

Re

(
1

ζ
3/2
o (τ )

)
dτ,

r = |x| → ∞. (4.6)

The integrand is evaluated along the path of the incident vortex determined by the
solution of equation (3.3). But that equation implies that∣∣∣∣dζo

dz
(τ )

∣∣∣∣
2

=

(
π + 4

2hU

)
∂ζo

∂τ
, (4.7)

and this permits (4.6) to be evaluated explicitly in the form

pS(x, t)(
ρoUΓ

h

)(
h

r

)1/2

sin
(

1
2
θ
) ≈ 1

π

(
π + 4

2

)1/2

Re

[
1√
ζo

]
, r = |x| → ∞, (4.8)

where the square brackets indicate evaluation at [t] = t − |x|/co.
The corresponding acoustic pressure profiles for y∞/h = 0.25, 0.1 are plotted in

figures 6 and 7, together with the overall acoustic pressure p = pΓ + pS , given (in the
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plotted as functions of the retarded time t − |x|/co for y∞/h = 0.1.
The corresponding trajectories of Γ and the peak of the free-streamline circulation density
γ (t − s/U ) are shown in the upper part of the figure.

same notation) by

p(x, t)(
ρoUΓ

h

)(
h

r

)1/2

sin
(

1
2
θ
) ≈ − 1

π

(
π + 4

2

)1/2

Re

[
1√
ζo

(∣∣∣∣
√

ζo + 1√
ζo + i

∣∣∣∣
2

− 1

)]
. (4.9)

Evidently the profile of pS is similar in shape but opposite in sign to the directly
radiated pressure pΓ , being a sharply fronted pulse followed by a slowly decaying tail.
The tails are effectively equal and opposite and therefore ultimately produce equal
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and opposite contributions to the sound, because∣∣∣∣
√

ζo + 1√
ζo + i

∣∣∣∣
2

→ 1

at large retarded times, when Γ and the centroid of the bound vorticity proceed down-
stream as a ‘vortex pair’ of approximately zero net circulation, on parallel streamlines
(on which ∂Φ/∂yn assumes approximately equal values) and at essentially the same
convection velocity ∼U . The two components differ in strength only at those retarded
times when Γ is close to the tip of the fence, so that the overall acoustic waveform
consists of a short positive pulse whose width progressively decreases as y∞/h → 0.

In the formal limit in which y∞/h ∼ +0 the vortex follows a trajectory immediately
adjacent to the wetted surfaces of the wall and fence and subsequently convects along
the free streamline. Then

ζo(τ ) =

(
π + 4

2

)
Uτ

h
+ i0

and the overall pressure given by (4.9) vanishes identically for all values of the
retarded times [t]. This predicted cancellation of the net radiation is a consequence
of the linearized approximation, according to which both Γ and the shed vorticity
convect at the same mean flow velocity. In the analogous flow of figure 1(b), involving
a cavity bounded by a free streamline continuation of the wall, linear theory requires
that Γ and the shed vorticity convect at the same velocity U , and the acoustic
pressures produced by each are always equal and opposite (Howe 1976, 1998b).

5. Conclusion
Aeroacoustic sources close to the sharp edge of an acoustically non-compact body

are known to generate sound with great efficiency. In free space the amplitude of
the acoustic pressure radiated by a low-Mach-number (M � 1), three-dimensional
localized source (i.e. by a ‘quadrupole’) is proportional to ρov

2M2, v being a typical
velocity in the source flow. The amplitude of sound generated by the same source
near the trailing edge of a large airfoil is larger by a factor ∼1/M3/2. When the source
and edge region can be regarded as two-dimensional over distances comparable
to the acoustic wavelength (as in figure 1b) the efficiency is increased further and
the amplitude becomes O(ρov

2), and independent of the aeroacoustic ‘source type’
(dipole, quadrupole, etc.). This latter conclusion has been shown in § 4 to apply when
the region downstream of the trailing edge is a nominally steady vacuous cavity
formed by water flowing over a ‘fence’ on a flat wall.

The equations describing aeroacoustic edge-interaction problems of this type can
always be linearized in a first approximation. The assumption is made that turbulence
quadrupole sources in the impinging flow are swept past the edge by the locally
steady mean flow, with no account taken of nonlinear back reaction on the source
motion produced by ‘images’ in the solid boundaries. The canonical problem treated
in this paper has taken the impinging disturbance to be a line vortex Γ . The vortex
induces the shedding of additional vorticity from the tip of the fence in order to
maintain a smooth flow at the edge (the Kutta condition). According to linear theory,
the shed vorticity convects at the constant uniform mean flow speed U within a sheet
of ‘bound’ vorticity on the undisturbed free streamline. A strong peak in the bound
vorticity is established when Γ is near its point of closest approach to the tip of the
fence; it forms a concentrated zone of vorticity on the free streamline with overall
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circulation ∼ −Γ and subsequently ‘keeps pace’ with the incident vortex Γ as the
latter travels downstream along a parallel trajectory adjacent to the cavity. Both the
incident and the shed vorticity generate sound by interaction with the fence, but
their respective contributions to the acoustic pressure are of opposite phase and tend
to cancel, so that the overall level of the radiation depends on a delicate balance
between the opposing sources. The dominant radiation in the form of a pressure
pulse of width ∼ h/M is produced when the vortex passes the fence tip; at later
times the two opposing sources become effectively equal and opposite – the ‘dipole’,
to which the isolated vortex is equivalent, is transformed into a weaker quadrupole
by an equal and opposite image vortex in the free streamline. In the simpler problem
of figure 1(b), where the cavity is formed immediately downstream of the edge of a
half-plane, the two opposing sources are equal and opposite for all times and linear
theory predicts that the flow is silent.

These conclusions are based on the hypothesis that the vacuous wake extends
downstream a distance at least of the order of the acoustic wavelength, so that the
sound waves are launched above a non-compact pressure-release surface.
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